Ex) Article Title, Author, Keywords
Online ISSN 2288-5978
Ex) Article Title, Author, Keywords
Journal of the Korean Society of Food Science and Nutrition 2017; 46(3): 335-342
Published online March 31, 2017
Copyright © The Korean Society of Food Science and Nutrition.
Eun Hee Sung, Se Mi Shin, and Yoon-Han Kang
Department of Food Processing and Distribution, Gangneung-Wonju National University
In this study, we investigated the physicochemical quality characteristics and antioxidant activities of water extracts (20°C and 95°C) against different parts (leaf and petiole) from Wasabia japonica (wasabi). Water extracts were divided into six types of wasabi powders: leaf hot air dried (LD), petiole hot air dried (PD), whole (leaf+petiole) hot air dried (WD), leaf steamed and hot air dried (LSD), petiole steamed and hot air dried (PSD), and whole steamed and hot air dried (WSD). Turbidity was higher in wasabi 20°C water extracts than in 95°C hot water extracts. Browning degree was higher in wasabi leaf extracts than in petiole extracts. The pH of hot water extraction was lower than that of room temperature extraction. Wasabi extracts did not show much difference in Hunter’s color values according to extraction temperature, expected that b value of yellowness was significantly higher in leaf extracts than in petiole extracts. Carbazole pectin contents of leaf extracts were significantly higher than in petiole extracts, however water soluble pectin was higher in petiole extracts. The total polyphenol contents of LD20 and LD95 were 1,561.43 mg gallic acid equivalent (GAE)/100 g and 1,163.02 mg GAE/100 g, respectively, and total polyphenols decreased during hot water extraction. Extracts from different parts of wasabi showed a significant difference in total flavonoid contents. Total flavonoid contents of LD20, LD95, PD20, and PD95 were 554.44 mg/100 g, 396.65 mg/100 g, 55.42 mg/100 g, and 47.68 mg/100 g, respectively. In the sensory evaluation, LD95 extract showed significantly higher values than other samples in terms of color, flavor, taste, mouth feeling, and overall acceptability. In the analysis of sourness, saltiness, umami, sweetness, and bitterness taste by an electronic tongue, the sourness values of LD20 and PSD95, saltiness values of WSD20 and WSD95, and umami values of PD20 and PD95 were significantly higher than other extracts. The results of this study suggest that wasabi leaf and petiole extracts enhance qualities and antioxidant activities when used different parts together.
Keywords: Wasabia japonica, wasabi, total polyphenol, total flavonoid, antioxidant activity
Journal of the Korean Society of Food Science and Nutrition 2017; 46(3): 335-342
Published online March 31, 2017
Copyright © The Korean Society of Food Science and Nutrition.
Eun Hee Sung, Se Mi Shin, and Yoon-Han Kang
Department of Food Processing and Distribution, Gangneung-Wonju National University
In this study, we investigated the physicochemical quality characteristics and antioxidant activities of water extracts (20°C and 95°C) against different parts (leaf and petiole) from Wasabia japonica (wasabi). Water extracts were divided into six types of wasabi powders: leaf hot air dried (LD), petiole hot air dried (PD), whole (leaf+petiole) hot air dried (WD), leaf steamed and hot air dried (LSD), petiole steamed and hot air dried (PSD), and whole steamed and hot air dried (WSD). Turbidity was higher in wasabi 20°C water extracts than in 95°C hot water extracts. Browning degree was higher in wasabi leaf extracts than in petiole extracts. The pH of hot water extraction was lower than that of room temperature extraction. Wasabi extracts did not show much difference in Hunter’s color values according to extraction temperature, expected that b value of yellowness was significantly higher in leaf extracts than in petiole extracts. Carbazole pectin contents of leaf extracts were significantly higher than in petiole extracts, however water soluble pectin was higher in petiole extracts. The total polyphenol contents of LD20 and LD95 were 1,561.43 mg gallic acid equivalent (GAE)/100 g and 1,163.02 mg GAE/100 g, respectively, and total polyphenols decreased during hot water extraction. Extracts from different parts of wasabi showed a significant difference in total flavonoid contents. Total flavonoid contents of LD20, LD95, PD20, and PD95 were 554.44 mg/100 g, 396.65 mg/100 g, 55.42 mg/100 g, and 47.68 mg/100 g, respectively. In the sensory evaluation, LD95 extract showed significantly higher values than other samples in terms of color, flavor, taste, mouth feeling, and overall acceptability. In the analysis of sourness, saltiness, umami, sweetness, and bitterness taste by an electronic tongue, the sourness values of LD20 and PSD95, saltiness values of WSD20 and WSD95, and umami values of PD20 and PD95 were significantly higher than other extracts. The results of this study suggest that wasabi leaf and petiole extracts enhance qualities and antioxidant activities when used different parts together.
Keywords: Wasabia japonica, wasabi, total polyphenol, total flavonoid, antioxidant activity
© Journal of the Korean Society of Food Science and Nutrition. Powered by INFOrang Co., Ltd.